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Abstrac t  

The problem of construction of analytic and crossing symmetric partial waves leads to a 
generalized Riesz problem. In some cases nontrivial solutions can be constructed from the 
solutions of a homogeneous Fredholm integral equation. It is suggested that the unitary 
partial waves satisfy a similar equation. 

1. In troduct ion 

The general properties of  the pion-pion scattering amplitude, analyticity, 
crossing symmetry,  and unitarity take a remarkably simple form when they 
are applied to partial waves. In spite of  this, nobody has till now constructed 
functions that satisfy them exactly. 

In contradistinction to the previous approaches we suggest constructing 
partial waves since on them the above general requirements can be turned 
into true equations. 

In our approach the problem will have two steps: In the first one the 
linear part of the constraints will be solved, i.e., the problem of  the description 
of  the class of  functions that are analytic in a given domain of  the complex 
s plane and satisfy the Balachandran-Nuyts-Roskies (BNR) crossing relations. 
The second step will consist in finding inside this class those partial waves 
that are unitary. 

It wilt be shown that the linear part of the problem is equivalent to the 
generalization of  a problem first raised by Riesz (Adamyan et  al., 1968). We 
have succeeded in solving this problem only in some special cases. In the others 
we suggest a way that may lead to the solution. The full solution requires the 
solving of  a separation problem for the spectrum of  a Hankel operator. 

l Work performed under contract with the Rumanian Nuclear Energy Committee. 
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It happens that the analyticity and the crossing symmetry together give rise 
to a Hankel operator that has remarkable properties. With the Schmidt pairs 
~, r/, (~, ~ ~/2)  of this operator we can construct nontrivial functions that are 
exactly crossing symmetric and analytic. In this case the partial waves can be 
constructed from the solutions of a homogeneous Fredholm integral equation. 

In the first part of the paper we show the equivalence of the linear part of 
the problem with the Riesz problem and give the description of the associated 
Hankel operator, and in the second part we construct solutions to our problem. 

2. Statement o f  the Problem 

The key point in the following will be the change of the partial wave crossing 
relations into true equations. The BNR relations (Balachandran and Nuyts, 
t968; Roskies, 1970) are necessary and sufficient conditions for crossing, and 
this is the reason we will consider them as true equations, in contradistinction 
to the usual view, which takes them as sum rules. 

Their general form is (Roskies, 1970) 

4 

f ( 4 - s ) F n ( s  ) O, n 1 , 2 , . . .  ds 
0 

where 

P.(s) = c ,t(s) f / (O  

j}S(s) being the partial waves and CSn, l(S) given functions. So we will consider 
only one relation, written in the form 

4 

j (4 - s)f(s)ds = 0 (2.1) 
0 

where by f (s)  we will understand a "partial wave." 
The partial waves are analytic functions in a domain D of the complex 

s plane that includes the interval (0, 4), the exact shape of it being given by 
Martin (Martin, 1969). 

Let D' be another domain such that D' C D, which can be D minus a finite 
region around the left-hand cut. Let z(u), u = (s - 2)/2 be the conformal 
mapping of D' onto the unit disk [z[ < 1 such that z(0) = 0. 

We define the function 

g(z) - S(s) = 1 + (x/~- s)/sf(s) (2.2) 

and remark that g E/ / I ,  where Ha is the Hardy space of functionsf(z) regular 
in the unit disk whose norms are given by 

27r 

[[fill =sup [ 1  f lf(rei°)ldO} 
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Then the relation (2.1) gives us 
4 

f v ~ -  s)S(s)ds = 2~ (2.1') 
0 

In fact we must appiy the transformation (2.2) to the true partial waves, but then 
the right-hand side of (2.1') is modified by a trivial factor. Let 

g(z)= ~ anz n-1 
n = l  

be the Taylor expansion of the function g(z). By putting it into (2.1') one gets 

an Tn = l 
n = l  

where 
4 

7n= ~l f s(4x~-Z~- s )zn- l (s )  ds, n = 1,2, . . .  

0 

This is the form of the crossing symmetry we have looked for. 
Now we can state the problem: 

The Riesz Generalized Problem. Given a positive number p > 0 and an 
infinite sequence {Tn}] of complex numbers it is required to find 
among the functions 

f(z)  = ~ a,,z n - I  
r t = I  

regular in the disk lz ] < 1 those for which 

anTn = 1 
n = l  

Ilflll ~ P 

(2.3a) 

(2.3b) 

This problem is the generalization of a problem by Riesz originally stated 
for a finite sequence {7~} N and the minimum norm in the/ / i  space (Adamyan 
et al., 1968). 

If we want to extend this treatment to the pion-nucleon scattering we must 
generalize the above problem since the partial waves of the 7rN reactions can 
have poles on the first sheet. 

I f f  E L1 (0, 2rr), we will define the Fourier coefficients by 
2~ 

c k ( f ) = l  f f ( f ) f k d O '  f = e  i°, k = 0 , + - l , . . .  (2.4) 

0 

and the generalization of the above problem would be as follows: 
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Given a positive number p > 0, an integer k ~> 0 and an infinite sequence 
(Tn}~ of  complex numbers, it is required to find those functions 

f(~') E L1 (0, 27r) for which 

C-n (f)Ta +l = 1 (2.3a') 
n =0 

Ilflla ~< p (2.3b') 

cl(f)~ --~ (2.3c) 
l=1 

is a rational function with at most k poles inside the unit disk. 

Since the pion-pion partial waves are real analytic functions, the domain D, 
by the reflection principle, will be a symmetric domain, so we can take D'  also 
symmetric and then we can choose the phase of  the conformal mapping such 
that the numbers 7n will be real numbers. 

In the following we will suppose that 7n are real numbers. 
With the sequence {Tn}~ we will associate the Hankel matrix P = (7/+k-1)~- 

This operator, generated by both crossing and analyticity, has remarkable 
properties given by Theorem 1: 

Theorem 1. The Hankel operator P = (T/+k-1)]  ~ is a trace class operator. 
Its spectrum is non-negative and the eigenvalues X 4= 0 are simple. 

Proof Let z(u), u = (s - 2)/2 be the conformal mapping o f D '  onto  the unit 
disk [z[ < I,  with z(0) = 0. We choose the phase such that the interval (0, 4) will 
go into ( - 1 ,  1). 

By the Schwarz lemma 

t z (u ) l<~lu l=l ( s -2 ) /2}  for i u l <  1 

From the relation of  definition for 7n we have 

2"n" lTn[ = ~ ) z n - l ( s ) d s  [ = ] 4 lx/-f'-Z-~-u2 z n - l ( u )  du 
0 -- i  

~<4 

1 1 

--1 --1 

and this implies 

which shows that P is a trace class operator. The condition (2.5)is a sufficient 
condition for compacticity of  P in the 11 space. But then by a known lemma 
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(Adamyan et al., 1971) the operator P has the same eigenvectors in all lp spaces. 
Hence if ~ = (~])~ is an eigenvector of  F, the function 

j - t  
]=1 

is an analytic function in I z I < 1 and continuous on I z I = 1. 
Let ~ = (~])~ be a non-null eigenvector (tl ~ 112 4= 0) of  P that satisfies the 

eigenvalue equations 

~[n+m-I ~rn =X~n, n= 1 , 2 , . . .  
m = l  

or in an equivalent form 

m = l  1 

Since 

~(z) = ~ ~y-1 
/=1 

is an analytic function continuous on I z 1= 1 we can change the sum and the 
integral in (2.6) and obtain 

1 

i X / 1 - ~  z n-1 du = 2rrX~n, = 1,2 (u) ~(z) n 

-1  

Multiplying by ~n and by taking the sum one gets 
1 

[ ~ P(z) du 
1 

X -- --1 ) 0 
27r tl ~ I1= 2 

i.e., the spectrum is non-negative. 
Let n > 1 be the multiplicity of  the eigenvalue X > O. Let ul, u2 . . . . .  Un be 

the corresponding eigenvectors. Then there exist some constants % c > . . . ,  cn 
such that the function u = Eciui, which is an eigenvector too, has a zero of  
order n - 1 at the point z = 1. If  na is the multiplicity of  X and n 2 that of  -X 
in the point spectrum of P, a theorem by Clark (Clark, I968) states that the 
number of zeros of  u(z) at Zo, where t Zot = 1, is p 4 2 min(n 1, n2). Since n2 = 0 
we obtain n ~< 1. Q.E.D. 

3. Construction o f  Solutions 

Let i-" = (7/+k-1)~ be a compact Hankel operator. The s numbers of  a (non- 
Hermitian) operator are the eigenvalues of  the non-negative operator (F+F) ~/2. 
In our case P+ = P, the bar meaning the complex conjugation. 



1 
~r  (~) = 

and for any ~, 7 ~ 12 
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Since the operator P is compact  the multiplicity of  eigenvalues is finite. 
Let lfrll = So/> sl ~> • • • ~> sk ~> • • • be the enumeration of  the spectrum of  
(FF) 1/2, the eigenvalues being included with their multiplicities. Then for 
s = sk(P ) there exists a p-dimensional linear manifold of  Schmidt pairs (~, 7), 
~, 7 ~ /2  such 

P~ = sr~ 

r7  = st 

where p is the multiplicity of  the s number sk. 
If  ~ = (~])~' and 7 = (7])~, ~, 7 E 12 we will define the functions 

~+(~) = ~ ~.~/-~, 7_(~-) = ~ 7fl-/  
1 1 

If s =sk is an eigenvalue of the non-negative operator (~p)V2 with multi- 
plicity p the whole set of  Schmidt pairs (~, 7) corresponding to this s is given 
by (Adamyan et aL, 1971) 

~ +(~) = P(~)a@)~e(~) 
(3.1) 

7_(~) = ~-pP(~)a(~) ~e(~9 

where P(~) is an arbitrary polynomial of  degree less than p, a(D is an inner function 
that has exactly k zeros and ~e(~') is an outer function. 

With the sequence (3'j)~ we will associate the set M(P) of all the functions 
f E  L~  for which ck(f)  = 3'k, k = 1, 2 , . . .  where c~(f) are the Fourier coefficients 
o f f  defined by the relation (2.4), and the continuous functional on 

c r (g )  = lim ~ 1 -  ")'/+lcq(g), gE/-/1 
n ~  j = 0  

It is easily shown (Adamyan etal., 1968) that for any P(  I1 r I1 < oo) and any 
f E  M(P) we have 

2zr 

f f(f)g(~)~clO, ~ g~H~ ~ e tO, 

o 

27r if 
0 

If ~, 7 ~ /2  are such that (P~, 7) ¢ 0 the function 

g(~) = ~+(~')7-(~')C ~+(~)7+(~) (3.2) 
(r~,  n) (r~,  7) 

will satisfy the relation (2.3a), hence it will be a crossing symmetric function. 
This shows how many solutions have the crossing relations. 
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Now we can construct all the solutions to our problem when the condition 
(2.3b) has the form 

[Ifll = P = s~ 1, k = 0, 1, 2 . . . .  (2.3b") 

Indeed for p = s~ 1 we have the Schmidt pairs in the form (3. t ) .  We will 
suppose they are normalized 11 ~ II = II r/II = 1. Then the function 

~+(z)~+(~) s_l~ "z" (~" 

satisfies the relation (2.3a) and 
21r 2~r 

1 f 1 f Ilflla = si¢ 1 ~ [ ~+(~)~'/+(f) I dO = s~c 1 2-~ I ~+(~) 12dO = s ;  1 

o o 

i . e . , f  (z) satisfies also the condition (2.3b"). 
Since the set of  the whole Schmidt pairs is given by (3. I) the functions 

: ( z )  = sr? zP - 1e(z)P(T~/2)a2(z):e2(z ) (3.3) 

will give all the solutions of our problem satisfying the conditions (2.3a) and 
(2.3b"). 

The multiplicity of  every eigenvalue being unity, the form (3.3) simplifies 
to 

f ( z )  = sic 1 [A t2a2(Z)~e2(Z) (3.3') 

where the constant I A [is determined from the normalization condition 
{{~tl = {{r~t} = 1. 

The eigenvalues of  our (Hermitian) operator P being positive and simple 
the s numbers will be given by the eigenvalues of I': 

1~ = st  

or in another form 

~- ')'n +m - 1 ~m = S~n, n = 1 , 2  . . . .  (3.4) 
m =I  

The eigenvalue equation (3.4) is equivalent to an integral equation. 
Let ~:(x) be the function 

: (x)= ,.~ ~:x j-1 
j=l  

where ~ = (~j)~' is a solution of (3.4). By taking into account the form of 7n it 
is easy to show that the equation (3.4) is equivalent to the following one: 

1 

- f :(z(u)) 1 ~ du = s:(w) 
27": 1 - w z ( u )  

--1 
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Let u = h(z) be the inverse function of  the conformal mapping z = z(u). By a 

change of  variable we obtain 
1 

I27r f dxh'(x)x/I - h 2 ( x )  l¢(X) = s ¢ ( v ) -  xy (3.5) 

--1 

which is the integral equation we have looked for. So we have shown the 
following: 

Theorem 2. The functions f (z)  = s[~l~k2(z), k = O, 1,2 . . . .  where sk 
and ~0k(z ) are the eigenvalues and the corresponding (orthonormal)  
eigenfunctions of  the homogeneous Fredholm integral equation (3.5) 
give the whole solutions of  the BNR crossing relations whose norms are 
exactly s/c 1. For every sk there exists only one solution. 

I f  tlfllx < H P I1-1 we have no solution (Adamyan et al., 1968). For p 4= s/~ 1, 
k = 0,  1, 2 . . . .  we have an infinity of  solutions. The description of these 
solutions was not obtained. 

In the following we suggest a method that may give the answer. 
Let ~(z) be a bounded function ~(z) E H ~ .  Let T b e  the shift operator in 

the l 2 space. The action of T on ~ = (~1, ~2 . . . .  ) is T~ = (0, ~t,- • • ) and of its 
adjoints T +, T+~ = (~2 . . . .  ). A Hankel operator being an operator for which 
T+P = FT, it is evident that the operator P '  = F ~ ( T )  is also a Hankel operator. 
Now i fg(z)  E//1 it is easily seen that 

Cr~(T)(g(~)) = Cr(~(f )g(~))  (3.6) 

for every bounded function ~(z) E H~ and any bounded P. The last relation 
gives us the possibifity of  constructing the solutions of the problem when 
p 4= s/c 1 if we know the solution to the following (unsolved) problem: 

Let P be a compact  Hankel operator with the s numbers 
[IFII =So >~sl ~> " '  " ~> sk-1 > sk ~> "" "~> 0 and p > 0 such Se_l > 
p-1 > sk. It is required to find all the inner functions ~(z) E H~ for 
which the Hankel operator F '  = F ~ ( T )  has p-a as an s number,  and the 
corresponding (~, 77) Schmidt pairs. 

r ~ ( T ) n  = p-1 ~ (3.7) 

The theorem contained in the appendix of Clark's paper (Clark, 1968) shows 
that such functions do exist, and, moreover, it suggests that the inner functions 
~(z) can be simple Blashke factors. 

I f  we know the solution of the above problem the functions 

~+(z)~+(~) _ g(z)-;~).t~ p~+(z)~+(~), It,ll =lI~II = 
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will satisfy the relation 

¢r,~(T)(g ) = 1 = q}p(~(z)g(z)) = ~y(h(z)) 

i.e., the newly defined functions h(z)  = ~ ( z ) g ( z )  will be crossing symmetric and 
II h ]11 = II ~(z)g(z) lit = Jlg lit = p. Thus the functions h(z)  will give the extremal 
solutions of  the generalized Riesz problem when p v e sE x. By constructing the 
linear convex bull of  them we will obtain the description of  the whole solutions 
of the BNR crossing relations. 

If  the//1 norms of  the physical partial waves are not given by s~ a (P) (for a 
given domain D'),  then there must exist inner functions ~(z) such that the 
norms are given by s ' - l (P  ') [where s' is an s number of  the Hankel matrix 
P' = F~(T)]  and among the functions h(z )  = s '-1 ~(z)~02(z), where ~0(z) is an 
(orthonormal) solution of  the homogeneous Fredholm integral equation: 

1 

_ ~ ~ ~ ( x )  _ s ' ~ ( y )  (3 .8 )  t 3 d x h ' ( x ) x / f 2 - h 2 ( x ) ~ ( x )  1 - x y  
27r 

-1 

there must be at 1east one that satisfies the physical constraints. This is suggested 
to us by the solution of  the problems solved by Adamyan e t al. (1971). It seems 
to be nontrivial that the unitary and crossing symmetric partial waves could be 
obtained from the solutions of  a linear integral equation like (3.8). 

We consider that the knowledge of  the solution to the generalized Riesz 
problem will be the decisive step toward the construction of  physical partial 
waves that satisfy exactly all the required properties. 
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